481 research outputs found

    Comparability of Functional MRI Response in Young and Old During Inhibition

    Get PDF
    When using fMRI to study age-related cognitive changes, it is important to establish the integrity of the hemodynamic response because, potentially, it can be affected by age and disease. However, there have been few attempts to document such integrity and no attempts using higher cognitive rather than perceptual or motor tasks. We used fMRI with 28 healthy young and older adults on an inhibitory control task. Although older and young adults differed in task performance and activation patterns, they had comparable hemodynamic responses. We conclude that activation during cognitive inhibition, which was predominantly increased in elders, was not due to vascular confounds or specific changes in hemodynamic coupling

    Cannabis-dependent adolescents show differences in global reward-associated network topology: A functional connectomics approach.

    Get PDF
    Adolescence may be a period of increased vulnerability to the onset of drug misuse and addiction due to changes in developing brain networks that support cognitive and reward processing. Cannabis is a widely misused illicit drug in adolescence which can lead to dependence and alterations in reward-related neural functioning. Concerns exist that cannabis-related alterations in these reward networks in adolescence may sensitize behaviour towards all forms of reward that increase the risk of further drug use. Taking a functional connectomics approach, we compared an acutely abstinent adolescent cannabis-dependent (CAN) group with adolescent controls (CON) on global measures of network topology associated with anticipation on a monetary incentive delay task. In the presence of overall superior accuracy, the CAN group exhibited superior global connectivity (clustering coefficient, efficiency, characteristic path length) during monetary gain anticipation compared with the CON group. Additional analyses showed that the CAN group exhibited significantly greater connectivity strength during monetary gain anticipation across a subnetwork that included mesocorticolimbic nodes involving both interhemispheric and intrahemispheric connections. We discuss how these differences in reward-associated connectivity may allude to subtle functional alterations in network architecture in adolescent cannabis-dependence that could enhance the motivation for nondrug reward during acute abstinence

    Smokers and ex-smokers have shared differences in the neural substrates for potential monetary gains and losses

    Get PDF
    Despite an increased understanding of nicotine addiction, there is a scarcity of research comparing the neural correlates of non-drug reward between smokers and ex-smokers. Long-term changes in reward-related brain functioning for non-drug incentives may elucidate patterns of functioning that potentially contribute to ongoing smoking behaviour in current smokers. Similarly, examining the effects of previous chronic nicotine exposure during a period of extended abstinence may reveal whether there are neural correlates responsible for non-drug reward processing that are different from current smokers

    The Neurobiology of Cannabis Use Disorders: A Call for Evidence

    Get PDF
    Using cannabis is perceived by many as relatively harmless, but the adverse effects of problematic cannabis use are significant. Thirteen million individuals globally have Cannabis Use Disorders (CUDs; UNODC, 2015), with relapse rates comparable to those of other substance use disorders (~52–70%; Budney et al., 1999; Chauchard et al., 2013). Contrasting non-problematic recreational cannabis use, severe forms of CUD involve compulsive use despite significant harms to mental health; high stress levels (craving, withdrawal); cognitive deficits; academic and work absenteeism; and significant risky behaviors, such as driving and operating machinery while intoxicated. Worryingly, the concentration of Δ9-tetrahydrocannabinol, the compound driving the addiction liability of cannabis, has risen in cannabis products over the past decade (UNODC, 2015)

    Effects of delaying binge drinking on adolescent brain development : a longitudinal neuroimaging study

    Full text link
    Background: Onset of alcohol use by 14 relative to 21 years of age strongly predicts elevated risk for severe alcohol use problems, with 27% versus 4% of individuals exhibiting alcohol dependence within 10 years of onset. What remains unclear is whether this early alcohol use (i) is a marker for later problems, reflected as a pre-existing developmental predisposition, (ii) causes global neural atrophy or (iii) specifically disturbs neuro-maturational processes implicated in addiction, such as executive functions or reward processing. Since our group has demonstrated that a novel intervention program targeting personality traits associated with adolescent alcohol use can prevent the uptake of drinking and binge drinking by 40 to 60%, a crucial question is whether prevention of early onset alcohol misuse will protect adolescent neurodevelopment and which domains of neurodevelopment can be protected. Methods: A subsample of 120 youth at high risk for substance misuse and 30 low-risk youth will be recruited from the Co-Venture trial (Montreal, Canada) to take part in this 5-year follow-up neuroimaging study. The Co-Venture trial is a community-based cluster-randomised trial evaluating the effectiveness of school-based personality-targeted interventions on substance use and cognitive outcomes involving approximately 3800 Grade 7 youths. Half of the 120 high-risk participants will have received the preventative intervention program. Cognitive tasks and structural and functional neuroimaging scans will be conducted at baseline, and at 24- and 48-month follow-up. Two functional paradigms will be used: the Stop-Signal Task to measure motor inhibitory control and a modified version of the Monetary Incentive Delay Task to evaluate reward processing. Discussion: The expected results should help identify biological vulnerability factors, and quantify the consequences of early alcohol abuse as well as the benefits of early intervention using brain metrics

    Predicting success: patterns of cortical activation and deactivation prior to response inhibition

    Get PDF
    The present study investigated the relationships between attention and other preparatory processes prior to a response inhibition task and the processes involved in the inhibition itself. To achieve this, a mixed fMRI design was employed to identify the functional areas activated during both inhibition decision events and the block of trials following a visual cue introduced 2 to 7 sec prior (cue period). Preparing for successful performance produced increases in activation for both the cue period and the inhibition itself in the frontoparietal cortical network. Furthermore, preparation produced activation decreases in midline areas (insula and medial prefrontal) argued to be responsible for monitoring internal emotional states, and these cue period deactivations alone predicted subsequent success or failure. The results suggest that when cues are provided to signify the imminent requirement for behavioral control, successful performance results from a coordinated pattern of preparatory activation in task-relevant areas and deactivation of task-irrelevant ones

    Dissociated Grey Matter Changes with Prolonged Addiction and Extended Abstinence in Cocaine Users

    Get PDF
    Extensive evidence indicates that current and recently abstinent cocaine abusers compared to drug-naïve controls have decreased grey matter in regions such as the anterior cingulate, lateral prefrontal and insular cortex. Relatively little is known, however, about the persistence of these deficits in long-term abstinence despite the implications this has for recovery and relapse. Optimized voxel based morphometry was used to assess how local grey matter volume varies with years of drug use and length of abstinence in a cross-sectional study of cocaine users with various durations of abstinence (1–102 weeks) and years of use (0.3–24 years). Lower grey matter volume associated with years of use was observed for several regions including anterior cingulate, inferior frontal gyrus and insular cortex. Conversely, higher grey matter volumes associated with abstinence duration were seen in non-overlapping regions that included the anterior and posterior cingulate, insular, right ventral and left dorsal prefrontal cortex. Grey matter volumes in cocaine dependent individuals crossed those of drug-naïve controls after 35 weeks of abstinence, with greater than normal volumes in users with longer abstinence. The brains of abstinent users are characterized by regional grey matter volumes, which on average, exceed drug-naïve volumes in those users who have maintained abstinence for more than 35 weeks. The asymmetry between the regions showing alterations with extended years of use and prolonged abstinence suggest that recovery involves distinct neurobiological processes rather than being a reversal of disease-related changes. Specifically, the results suggest that regions critical to behavioral control may be important to prolonged, successful, abstinence

    The empirical replicability of task-based fMRI as a function of sample size

    Get PDF
    Replicating results (i.e. obtaining consistent results using a new independent dataset) is an essential part of good science. As replicability has consequences for theories derived from empirical studies, it is of utmost importance to better understand the underlying mechanisms influencing it. A popular tool for non-invasive neuroimaging studies is functional magnetic resonance imaging (fMRI). While the effect of underpowered studies is well documented, the empirical assessment of the interplay between sample size and replicability of results for task-based fMRI studies remains limited. In this work, we extend existing work on this assessment in two ways. Firstly, we use a large database of 1400 subjects performing four types of tasks from the IMAGEN project to subsample a series of independent samples of increasing size. Secondly, replicability is evaluated using a multi-dimensional framework consisting of 3 different measures: (un)conditional test-retest reliability, coherence and stability. We demonstrate not only a positive effect of sample size, but also a trade-off between spatial resolution and replicability. When replicability is assessed voxelwise or when observing small areas of activation, a larger sample size than typically used in fMRI is required to replicate results. On the other hand, when focussing on clusters of voxels, we observe a higher replicability. In addition, we observe variability in the size of clusters of activation between experimental paradigms or contrasts of parameter estimates within these

    Sleep habits, academic performance, and the adolescent brain structure

    Get PDF
    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefrontal anterior cingulate cortex appears most tightly related to the adolescents' variations in sleep habits, as its volume correlates inversely with both weekend bedtime and wake up time, and also with poor school performance. These findings suggest that sleep habits, notably during the weekends, have an alarming link with both the structure of the adolescent brain and school performance, and thus highlight the need for informed interventions.Peer reviewe
    • …
    corecore